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Abstract

We study the effect ofSU(3)-flavor breaking on high-density quark matter. We discuss, in
particular, a nonzero electron chemical potential and a finite strange-quark mass. We argue that
these perturbations trigger pion or kaon condensation. The critical chemical potential behaves as
µe ∼ √

mms∆/pF and the critical strange-quark mass asms ∼ m1/3∆2/3, wherem is the light-
quark mass,∆ is the gap, andpF is the Fermi momentum. We note that parametrically, both the

critical µe andm2
s/(2pF) are much smaller than the gap. 2002 Elsevier Science B.V. All rights

reserved.

1. Introduction

The study of hadronic matter in the regime of high baryon density and small temperature
has revealed a rich and beautiful phase structure [1–3]. One phase which has attracted
particular interest is the color–flavor locked (CFL) phase of three-flavor quark matter
[4]. This phase is expected to be the true ground state of ordinary matter at very high
density [5–7]. State of the art calculations are not sufficiently accurate to predict the critical
density of the transition to CFL matter with any certainty. Current estimates typically
range asρcrit ∼ (3–6)ρ0, whereρ0 is the saturation density of nuclear matter. An exciting
prospect is the possibility to put experimental constraints on the critical density from
observations of neutron stars. Several proposals have been made for observables that are
characteristic of different superfluid quark phases, and attempts are being made in order to
include these phases in realistic neutron star structure calculations [8–10].

Initial work on the superfluid phases of QCD focused mostly on idealized worlds with
Nf flavors of massless fermions and no external fields. But in order to understand the
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matter at the core of real neutron stars the effects of nonzero masses and finite chemical
potentials clearly have to be taken into account. The first study of the effects of a nonzero
strange-quark mass on CFL quark matter was carried out in [11,12]. The main observation
in this work was that a finite strange-quark mass shifts the Fermi momentum of the
strange quark with respect to the Fermi momentum of the light quarks. If the mismatch
between the Fermi momenta is bigger than the gap then pairing between strange and
nonstrange quarks is no longer possible. The transition from CFL matter to quark matter
with separate pairing among light and strange quarks (2+ 1SC) is predicted to occur at
ms ∼√

pF∆. Alford et al. observed that in the vicinity of this phase transition we expect to
encounter inhomogeneous BCS phases [13] analogous to the Larkin–Ovchinnikov–Fulde–
Ferell (LOFF) phase in condensed matter physics [14–16]. In the LOFF phase Cooper
pairs have nonzero total momentum and, as a consequence, pairing is restricted to certain
regions of the Fermi surface.

In the present work we analyze CFL matter for strange-quark masses and chemical
potentials below the unlocking transition [17]. We will argue that in this regime CFL matter
responds to the external “stress” by forming a Bose condensate of kaons or pions [18]. This
effect can be understood as a chiral rotation of the CFL order parameter. Superfluid quark
matter composed of only two flavors is characterized by an order parameter〈εabcubCγ5d

c〉
which is a flavor singlet [19–21]. This order parameter is “rigid” and superfluidity has to be
destroyed in order to create a macroscopic occupation number of charged excitations [22].
CFL matter, on the other hand, is characterized by an order parameter which is a matrix in
color and flavor space [4]:〈

qaL,iCq
b
L,j

〉= −〈qaR,iCqbR,j 〉= φ
(
δai δ

b
j − δbi δ

a
j

)
, (1)

wherei, j label flavor anda, b label color indices. We can introduce a chiral fieldΣ that
characterizes the relative flavor orientation of the left- and right-handed condensates [23].
In the vacuumΣ = 1, but under the influence of a perturbationΣ may rotate. BecauseΣ
has the quantum numbers of pseudoscalar Goldstone bosons, such a rotation corresponds
to a macroscopic occupation number of Goldstone bosons.

There is an even simpler way to explain the phenomenon of kaon condensation in
superfluid quark matter, see Fig. 1. Here we concentrate on the effect of a nonzero strange-
quark mass. A nonzero quark-mass shifts the energy of strange quarks in the vicinity of
the Fermi surface by∼ m2

s/(2pF). In normal quark matter this leads to the decay s→
u+ e− + ν̄e (or s→ u+ d+ ū). This decay will reduce the number of strange quarks and
build up a Fermi sea of electrons until the electron chemical potential reaches∼m2

s/(4pF).
In superfluid quark matter the system can also gain energym2

s/(2pF) by introducing an
extra up-quark and a strange hole. This process appears to require the breaking of a pair
and therefore involve an energy cost which is of the order of the gap∆. This is not correct,
however. An up-, down-particle/strange-hole pair has the quantum numbers of a kaon. This
means that the energy cost is not∆, butmK �∆. The CFL vacuum can decay into K+ or
K0 collective modes via processes like 0→ (ds)(du)+ e− + ν̄e or 0→ (us)(du).

This paper is organized as follows. In Section 2 we present general arguments for
the existence of kaon and pion condensates in high-density matter with broken flavor
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Fig. 1. Schematic picture of weak decays in normal (a) and superfluid (b) quark matter with
three quark flavors. We assume that initially the density of all quark flavors is the same, so that
εF,s � εF,ud +m2

s/(2pF). Solid and open circles show particles (p) and holes (h). In (a), a strange
particle decays into an up-quark, an electron and a neutrino, leaving behind a strange hole. In the
left panel of (b), a strange particle decays into an up-quark, a down-particle–hole pair, an electron
and a neutrino. The remaining (pp)(hh) configuration has the quantum numbers of a K+. In the right
panel we show the decay of a strange quark into a (pp)(hh) configuration with the quantum numbers
of a K0.

symmetry. In Section 3 we strengthen these arguments by performing an explicit matching
calculation. In Section 4 we provide a different perspective on our results by using linear
response theory.

2. Three-flavor quark matter at ms �= 0 and µe �= 0

In order to study QCD at high baryon density it is convenient to use an effective descrip-
tion that focuses on excitations close to the Fermi surface. Two effective descriptions of
this type are available. The first effective theory is valid for excitation energies below the
Fermi momentumpF, while the second one applies to excitation energies below the gap∆.
The coefficients that appear in these effective theories can be worked out using matching
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arguments. In the first stage we match the microscopic theory, QCD at finite baryon den-
sity, to an effective theory belowpF. In the second step, we match this effective description
to an effective theory involving Goldstone modes.

The QCD Lagrangian in the presence of a chemical potential is given by

L =ψ
(
i/D +µγ0 −µeQγ0

)
ψ −ψLMψR −ψRM

†ψL − 1
4G

a
µνG

a
µν, (2)

whereM is a complex quark-mass matrix which transforms asM → LMR† under chiral
transformations(L,R) ∈ SU(3)L × SU(3)R,Q is the quark-charge matrix,µ is the baryon
chemical potential andµe is (minus) the chemical potential for electric charge. As usual,
we treatM as a (spurion) field in order to determine the structure of mass terms in the
effective chiral theory. Once this has been achieved, we set the mass matrix to its physical
valueM = diag(mu,md,ms).

The quark fieldψ can be decomposed asψ =ψ+ +ψ− whereψ± = 1
2(1± �α · p̂)ψ . The

ψ+ component of the field describes quasiparticle excitations in the vicinity of the Fermi
surface. Integrating out theψ− field we get [24–26]:

S =
∫

dp0

(2π)

d3p

(2π)3

{
ψ

†
L+(p0 − εp − v ·A)ψL+

− ∆

2

(
ψaiL+Cψ

bj
L+(δaiδbj − δajδbi)+ h.c.

)
+ψ

†
L+
(

−µeQ− MM†

2pF

)
ψL+

+ ∆

8p2
F

ψaiL+Cψ
bj
L+
(
M

†
aiM

†
bj −M

†
ajM

†
bi

)
+ (
R→L,M →M†,Q→Q†)+ · · ·

}
, (3)

where εp = | �p| − µ, vµ = (1, �v) with �v = �p/p, ∆ is a parameter that controls mass
corrections to the gap andi, j, . . . anda, b, . . . denote flavor and color indices. In order
to perform perturbative calculations in the superconducting phase we have added a tree-
level gap termψL,RC∆ψL,R in the free part of the Lagrangian and subtracted it from
the interacting part (not explicitly shown). The magnitude of∆ can be determined self
consistently order by order in perturbation theory. In the normal phase, both∆ and∆
vanish. In this case, only the first mass term in (3) contributes.

We observe that at O(1/pF), flavor symmetry breaking due to a chemical potential for
charge is indistinguishable from symmetry breaking due the quark-mass matrix. Indeed, up
to terms suppressed by additional powers of(∆/pF), (p/pF) or (m/pF) the Lagrangian (3)
is invariant under the time-dependent flavor symmetry (from now on we drop the subscript
“+”):

ψL →L(t)ψL ,

ψR → R(t)ψR,(
−µeQ− MM†

2pF

)
→ L(t)

(
−µeQ− MM†

2pF

)
L†(t)+ iL(t)∂0L

†(t),
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(
−µeQ

† − M†M

2pF

)
→R(t)

(
−µeQ

† − M†M

2pF

)
R†(t)+ iR(t)∂0R

†(t), (4)

whereL(t) andR(t) are left- and right-handed time-dependent flavor transformations.
For excitation energies below the gap∆, we can use an effective theory that includes

only the pseudo-Goldstone bosons [23,26–28]. The scale of the momentum and energy
expansion in this theory is set by the gap∆. Taking into account the symmetries discussed
above we see that a generic term in the effective Lagrangian has the form

L ∼ f 2
π∆

2
(
∂0 − iµeQ− iMM†/(2pF)

∆

)n( �∂
∆

)m(
MM

p2
F

)p(
µeQ

pF

)q
. (5)

This equation implies that theN th-order term in the effective Lagrangian is given by the
most generalSU(3)L × SU(3)R invariant term constructed from the chiral fieldΣ and
containingn covariant time derivatives,m spatial derivatives,p powers ofM2, andq
powers ofµeQ such thatN = n+m+ p+ q . We note that mass terms are suppressed by
eitherM2/p2

F orMM†/(pF∆). Terms of the formM2/p2
F contain the quark-mass matrix

in the flavor antisymmetric combination shown in the gap term in Eq. (3).
The leading terms of the effective Lagrangian take the form

Leff = f 2
π

4
Tr
[∇0Σ∇0Σ

† − v2
π∂iΣ∂iΣ

†]+ 2A
[
det(M)Tr

(
M−1Σ

)+ h.c.
]

+ · · · , (6)

∇0Σ = ∂0Σ + i

(
µeQ+ MM†

2pF

)
Σ − iΣ

(
µeQ

† + M†M

2pF

)
. (7)

HereΣ = exp(iπaλa/fπ) is the flavor-octet chiral field and theSU(3)A generators are
normalized as Tr[λaλb] = 2δab. We have not displayed the flavor-singlet part of the
effective Lagrangian. The first term in Eq. (6) is invariant under the approximate symmetry
(4) because of the presence of the covariant time derivative. The second term is not
invariant under (4), butA∼ f 2

π∆
2/p2

F is suppressed by 1/p2
F, in accordance with Eq. (5).

TheM2 term is not the most general term consistent with the symmetries. The structure
of this term determined by the fact that it has to contain the quark-mass matrix in a flavor
antisymmetric combination. O(M2) terms that are symmetric in flavor do not vanish, but
they are strongly suppressed. We provide an estimate of these terms in Appendix A.

Despite the similarity between the effective theory for the Goldstone modes in the CFL
phase and chiral perturbation theory in vacuum, there are important differences in the
power counting. As usual, the contribution of loops is suppressed by powers ofp/fπ.
However, in the CFL phase,fπ ∼ pF �∆ which means that the suppression of loops with
respect to tree level terms is much more pronounced than it is in the vacuum.

More differences appear in the expansion inM. First of all, because of an approximate
axialZ2 symmetry in the CFL phase there are no odd powers inM. In addition to that, the
(MM†)(M†M) terms can become comparable to theM2 terms without breaking the chiral
expansion. Indeed, as we shall argue below, this is likely to be the case for realistic values of
ms andpF. There are two reasons why the(MM†)(M†M) term can become comparable
to theM2 term. First, the term proportional to(MM†)(M†M) gives a contribution to
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meson masses which is of the orderm2/pF while theM2 term contributes at orderm∆/pF.
These contributions are comparable ifm∼∆, which is inside the regime of validity of the
effective theory,m <

√
∆pF. Second, in the realistic case wherems � md,mu, the term

quadratic inM is proportional to at least one light-quark mass, while the term quartic in
M contains terms proportional tom4

s.
Using (6) we can easily compute the masses of the Goldstone bosons in the CFL phase.

At large density, Lorentz invariance is broken and we identify the mass with the energy of
a �p = 0 mode. Forµe = 0 the masses of the flavor nonsinglet states are given by

mπ± = ∓m
2
d −m2

u

2pF
+
[

4A

f 2
π

(mu +md)ms

]1/2

,

mK± = ∓m
2
s −m2

u

2pF
+
[

4A

f 2
π

md(mu +ms)

]1/2

,

mK0,�K0 = ∓m
2
s −m2

d

2pF
+
[

4A

f 2
π

mu(md +ms)

]1/2

. (8)

The splitting between particles and antiparticles can be understood by observing that the
crossed terms in the kinetic term of Eq. (3) act as an effective chemical potential for
strangeness/isospin even ifµe = 0. We observe that the pion masses are not strongly
affected but the mass of the K+ and K0 is substantially lowered while the K− and�K0

are pushed up. As a result the K+ and K0 meson become massless ifms ∼ m
1/3
u,d∆

2/3.
For larger values ofms the kaon modes are unstable, signaling the formation of a kaon
condensate.

Once kaon condensation occurs the ground state is reorganized. For simplicity, we
consider the case of exact isospin symmetrymu = md ≡ m. The most general ansatz for
a kaon condensed ground state is given by

Σ = exp
(
iα
[
cos(θ1)λ4 + sin(θ1)cos(θ2)λ5 + sin(θ1)sin(θ2)cos(φ)λ6

+ sin(θ1)sin(θ2)sin(φ)λ7
])
. (9)

With this ansatz the vacuum energy is given by

V (α)= −f 2
π

(
1

2

(
m2

s −m2

2pF

)2

sin(α)2 + (
m0

K

)2(
cos(α)− 1

))
, (10)

where(m0
K)

2 = (4A/f 2
π)mu,d(mu,d + ms) is the O(M2) kaon mass in the limit of exact

isospin symmetry. Minimizing the vacuum energy we obtainα = 0 if m2
s/(2pF) < m

0
K and

cos(α) = (m0
K)

2/µ2
eff with µeff = m2

s/(2pF) if µeff > m
0
K. We observe that the vacuum

energy is independent ofθ1, θ2, φ even ifα �= 0. This implies that the effective potential in
the kaon condensed phase has three flat directions. The hypercharge density is given by

nY = f 2
πµeff

(
1− m4

K

µ4
eff

)
, (11)

whereµeff =m2
s/(2pF). This result is typical of a weakly coupled Bose gas [29–31]. We

also note that within the range of validity of the effective theory,µeff <∆, the hypercharge
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density satisfiesnY < ∆p2
F/(2π). The upper bound on the hypercharge density in the

condensate is equal to the particle density contained within a strip of width∆ around
the Fermi surface.

The symmetry breaking pattern isSU(2)I × U(1)Y → U(1) whereI is isospin andY
is hypercharge. It is amusing to note that this is the symmetry-breaking pattern of the
standard model. Kaon condensation is analogous to electroweak symmetry breaking with
a composite Higgs field [32,33]. We can discuss kaon condensation in terms of an effective
field theory which only involves a complex kaon doubletΦ = (K+,K0)

L = [
(∂0 + iµeff)Φ

†][(∂0 − iµeff)Φ
]− (

m0
K

)2(
Φ†Φ

)− λ
(
Φ†Φ

)2
. (12)

If µeff >m
0
K the kaon field acquires a nonzero vacuum expectation value〈Φ〉 = (0, v) and

theSU(2)×U(1) symmetry is broken toU(1). From (12) we getv = (µ2
eff −(m0

K)
2)/(2λ).

We can fixλ by comparing the amplitude of the kaon field to the result obtained from the
chiral theory. We findλ= (m0

K)
2/(2f 2

π).
In weak coupling the coefficients of the effective Lagrangian can be computed and more

quantitative statements about the onset of kaon condensation can be made. The gap is given
by [6,34–37]

∆= 512π42−1/3(2/3)−5/2µg−5 exp

(
3π2

√
2g

)
. (13)

The pion-decay constantfπ has been computed to leading order inαs [27] (a factor 2
discrepancy in the literature will be resolved in Section 3):

f 2
π = 21− 8 log2

18

µ2

2π2 . (14)

There is also disagreement about the value of the constantA [26–28,38,39]. The results
given in [26,27] are respectively

A= ∆∆

4π2
log(µ/∆), A= 3∆2

4π2
. (15)

Using the first of these two results, a K0 condensate forms if

m3
s >

(
144

21− 8 log2

)
mu∆∆ log(µ/∆). (16)

In Fig. 2 we show the dependence of the kaon mass onms for pF = 500 MeV and with∆
andfπ calculated to leading order in perturbation theory. We observe that the K0 becomes
massless forms � 60 MeV. There is obviously some uncertainty associated with the use
of first-order perturbation theory. An estimate of this uncertainty is provided by the scale
dependence of the result. We have calculatedmK with g evaluated at the scaleΛ = pF.
Varying Λ betweenpF/2 and 2pF gives critical strange-quark masses between 39 and
67 MeV.

If charge neutrality is enforced, we have to add the contribution of electrons to
the thermodynamic potential,Ω(Σ,µe) = ΩGB(Σ,µe) − µ4

e/(12π2). The ground state
is determined by minimizingΩ with respect toΣ subject to the condition that
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Fig. 2. Masses of K± and K0,�K0 excitations in the color–flavor locked phase. We show the excitation
energies as a function ofms for pF = 500 MeV. The gap∆= 67 MeV and the pion-decay constant
fπ = 104 MeV were determined to leading order in perturbation theory. The solid and dashed curve
show the masses of the(K+,K0) and (K−,�K0) states. The dotted curve shows the kaon masses
calculated from the leading-order O(mq) term. The short dashed curve shows the pion masses.

∂Ω/(∂µe)= 0. In the isospin symmetric limit these conditions are satisfied by pure K0

condensation withα as determined above and sin(θ1) = sin(θ2) = 1. This conclusion
remains valid in the casemd >mu because the light-quark mass difference also disfavors
K+ condensation compared to K0 condensation.

The effect of a small electron chemical potential can also be read off from Eq. (6).
A positive electron chemical potential lowers the energy of negatively charged Goldstone
modes and increases the energy of positively charged modes:

Eπ± = ±µe +mπ±, EK± = ±µe +mK± . (17)

A meson condensate will form whenµe equals the mass of the lightest negatively charged
state. Let us again consider the limit of exact isospin symmetry,mu =md =m. The mass
of the K− is mK− = (2

√
A/fπ)

√
mms + m2

s/(2pF) and the mass of theπ− is mπ− =√
2(2

√
A/fπ)

√
mms. For very smallms, the lightest negatively charged particle is the K−,

but form2
s/(2pF) > (

√
2 − 1)(2

√
A/fπ)

√
mms the lightest negative state is theπ−. For

negative electron chemical potentials, a K+ condensate is always favored. We should note
that the masses of charged Goldstone bosons are modified by electromagnetic effects. The
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electromagnetic self-energy in the CFL phase was estimated to bem2
em ∼ αem∆

2 [40,41].
At sufficiently large baryon density this effect will dominate over the O(M2) contribution
to the Goldstone boson masses.

3. Matching calculation for the O(M4) terms

In the weak coupling regime the coefficients appearing in the Lagrangian (6) can be
computed by matching to perturbative QCD. In this section we will perform the matching
calculation for theM4 terms in Eq. (6). Our goal is two-fold: to strengthen and illustrate
the symmetry arguments presented in the previous section and to clarify the calculations
of fπ in the literature.1

We begin by calculating the one-loop polarization functions for the zeroth component
of left-handed flavor currentsjL, right-handed flavor currentsjR and (transposed) color
currentsjT

c . In the limitω = 0, k → 0, we find

ΠAB
00 (0)= −




1
2 0 −1

2

0 1
2 −1

2

−1
2 −1

2 1


m2

D, (18)

where the indicesA,B correspond to(jL, jR, jT
c ) and we have introduced the quantity

m2
D = 21− 8 log(2)

18

(
µ2

2π2

)
, (19)

which is, up to a factorg2, the Debye mass [27,42]. The LL and RR components of (18)
receive contributions both from diagrams with normal propagators and from diagrams with
anomalous propagators, see Fig. 3. The LC and RC components only receive contributions
from diagrams with anomalous propagators [41]. The overall coefficient is nevertheless
exactly the same. The CC entry is twice bigger than the LL and RR entries because it
receives contributions from both left- and right-handed fermions.

The matrix (18) is not diagonal, so there is mixing between gluons and left- or right-
handed flavor currents. Also, there is no mixing between left- and right-handed flavor
currents, contrary to what we would expect for a system with broken chiral symmetry.
These defects can be cured by resumming bubble chains with intermediate gluons. In
practice we only have to compute the two-loop contribution because higher-order diagrams
simply correspond to replacing the free gluon propagator 1/(ω2 − k2) with the dressed
propagator 1/(ω2 − k2 − g2m2

D). The two-loop contributions to the polarization function
are superficially suppressed by a factorg2, but in the limitω,k → 0 the factorg2 in the
numerator is canceled by the screening massg2m2

D in the denominator.
Summing all bubble chains, we get

ΠAB
00 (0)= −




1
4 −1

4 0

−1
4

1
4 0

0 0 1


m2

D. (20)

1 We thank D. Kaplan for suggesting this calculation to us.
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Fig. 3. Diagrams contributing to the two-point functions of two L currents (a), one L and one
R current (b), and one L and one color current (c). The squares denote the anomalous fermion
self-energy, while the triangle denotes a resummed gluon propagator.
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We observe that flavor and color currents are decoupled and that the mixing matrix between
left- and right-handed current has the form expected for a system with broken chiral
symmetry. To leading order ing2, there are no additional contributions to the polarization
function in the soft limit. We can now match the result (20) against the low-energy theory:

L = f 2
π

4
Tr
(∇0Σ∇0Σ

†), (21)

where the covariant derivative∇0Σ = ∂0Σ + iWLΣ − iΣWR determines the coupling to
left- and right-handed gauge fieldsWL,R. Matching the gauge-field mass terms against (20)
givesf 2

π =m2
D, which is the result of Son and Stephanov [27,43,44].

This result can also be obtained in a different way. Since the gluon field acquires a large
mass of ordergµ�∆, it does not appear in the low-energy effective theory and we should
be able to integrate it out [23]. The matrix in (18) has eigenvaluesλ = −1/2,−3/2,0
and eigenvectors(1,−1)/

√
2, (1,1,−2)/

√
6 and(1,1,1)/

√
3. The vanishing eigenvalue

corresponds to the generators of the unbrokenSU(3)L+R+C. The one-loop polarization
function can be matched against the following mass term for the gauge fields:

L = m2
D

4

[1
2(WL −WR)

2 + 1
2

(
WL +WR − 2AT

0

)2]
. (22)

The gauge-field mass term still has the structure1
2(m

2
D/2)(W

2
L +W2

R + mixing) apparent
in (18). Integrating out the gluon fieldA0 eliminates the second term in (22) and we are
left with

L = m2
D

4

1

2
(WL −WR)

2, (23)

which has the structure expected from the low-energy effective theory (21). Matching (23)
against (21) givesf 2

π = m2
D as before. The important point is that in both approaches,

summing bubble chains or integrating out the gluon field at tree level, the mixing between
flavor and color currents cuts down the coefficient of the quadratic termsW2

L andW2
R by a

factor of 2 and introduces mixing between left- and right-handed currents.
We are now in a position to perform the matching calculation for theM4 term in Eq. (6).

In Appendix B we present an alternative argument based on integrating out the gauge field.
We are concerned with a possible mass term of the form

L = − f̄
2

4
Tr
[(
MM†Σ −ΣM†M

)(
M†MΣ† −Σ†MM†)]

= − f̄
2

2
Tr
[(
MM†ΣM†MΣ† −MM†MM†)]. (24)

We will determinef̄ by computing the shift in the ground-state energy proportional to
Tr[MM†M†M] and Tr[(MM†)2] in both QCD and in the effective theory. In the effective
theory the shift is given by

>E = f̄ 2

2
Tr
[(
MM†)(M†M

)− (
MM†)2]. (25)
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Fig. 4. (a) shows the diagram in the microscopic theory which is matched against theMM†ΣM†MΣ

term in the chiral theory. (b) shows the diagrams which are matched against the(MM†)2 term.

We note that the two terms in Eq. (24) can be distinguished even in the phaseΣ = 1 by the
the relative position ofM andM†. We also note that other O(M4) terms allowed by the
symmetries of QCD give structures that are different from the ones that appear in Eq. (25).

In the microscopic theory, the shift in the vacuum energy proportional to Tr[MM†M†M]
and Tr[(MM†)2] comes from the graphs in Fig. 4, (a) and (b). The Tr[MM†M†M] term is
given by

>E = 1

(2pF)2

(
m2

D

2

)
Tr
[
MM†λa

] · δ
ab

m2
D

·
(
m2

D

2

)
Tr
[
M†Mλb

]

= m2
D

2

1

(2pF)2
Tr
[(
MM†)(M†M

)]
, (26)

and the Tr[(MM†)2] term is

>E = −m
2
D

2

1

(2pF)2
Tr
[(
MM†)2]. (27)

Matching these results against Eq. (25), we conclude that

f̄ 2 = f 2
π

(2pF)2
, (28)

which is the result we derived in Section 2 from making the time derivative covariant with
respect to time-dependent flavor transformations.
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4. Linear response

In this section we offer a different perspective on the results discussed in the previous
sections by using linear response theory. We shall also provide a more microscopic
explanation of why the two- and three-flavor cases behave so differently. In the three-
flavor case the system responds to a nonzero electron chemical potential by forming a
condensate of collective excitations. In the two-flavor case, on the other hand, the response
is carried only by the ungapped fermions. From an effective-field theory point of view this
is simply due to the fact that three-flavor CFL quark matter has broken chiral symmetry and
the low-energy effective description contains charged collective modes whereas the two-
flavor theory has unbroken chiral symmetry and the low-energy theory contains ungapped
fermions and neutral modes.

In order to set the stage for the discussion of superfluid quark matter we briefly review
the response of ordinary quark matter. The grand canonical potential of noninteracting
quarks at zero temperature is given by

Ω = −p= − Nc

12π2

∑
f

[
µf kf

(
µ2
f − 5

2
m2
f

)
+ 3

2
m4
f log

(
µf + kf

mf

)]
, (29)

with kf =
√
µ2
f −m2

f is the Fermi momentum and andµf the chemical potential for the

quark flavorf = u,d,s. The quark density is given by

nf = − ∂Ω

∂µf
= Nck

3
f

3π2 . (30)

It is convenient to decompose the chemical potential into baryon charge, isospin, and
hypercharge components:

µu = µ+ 1

2
µI + 1

2
√

3
µY, µd = µ− 1

2
µI + 1

2
√

3
µY, µs = µ− 1√

3
µY .

We also note thatµI = √
3µY = −µe acts like a chemical potential for electric charge. We

can now study the response of the system to an external chemical potential or a change
in the quark masses. We begin with the flavor symmetric casemu = md = ms = 0. The
isospin and hypercharge susceptibilities are

χI = ∂nI

∂µI
= −∂

2Ω

∂µ2
I

= χY = ∂nY

∂µY
= −∂

2Ω

∂µ2
Y

=Nc

(
µ2

2π2

)
. (31)

This result has a very simple interpretation. The change in the isospin or hypercharge
density as a function of the corresponding chemical potential is simply given by the
density of states on the Fermi surface. The susceptibility (31) can also be calculated in
a different way, using the fact thatχ is the flavored vector current correlation function at
zero momentum. We have

χI = −ΠI
(
ω= 0, �k→ 0

)= −
∫

d4x
〈
j3

0(x)j
3
0(0)

〉
(32)

with jaµ(x)=ψ(x)γµ
τa

2 ψ . The correlation function (32) has a vacuum piece and a density-
dependent piece. The density-dependent piece is dominated by the contribution of particles
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and holes in the vicinity of the Fermi surface. We can calculate this contribution using the
effective theory proposed in [24,25]. We get

χI = lim
ω,k→0

Nc

∫
d4p

(2π)4
1

(p0 − εp)(p0 +ω− εp+k)

= Nc

∫
d3p

(2π)3
∂n

∂ε
=Nc

(
µ2

2π2

)
, (33)

where εp = Ep − µ, Ep = √
p2 +m2, and n(ε) is the density of states. This result

obviously agrees with Eq. (31).
From the grand canonical potential (29) we can also determine the response of the

system to nonzero quark masses. The derivative of the hypercharge density with respect
to the strange-quark mass is given by

µ
∂nY

∂m2
s

∣∣∣∣
m2

s=0
= −µ ∂2Ω

∂m2
s ∂µY

∣∣∣∣
m2

s=0
= Nc√

3

(
µ2

2π2

)
. (34)

This result expresses the simple fact that the number of strange quarks is depleted
compared to the number of nonstrange quarks as the mass of the strange quark is increased.
Again, we can compute this susceptibility using diagrammatic techniques. Computing a
one-loop graph with one insertion ofµY and one insertion ofm2

s/(2µ) we reproduce (34).
When we study real physical systems, we are interested in the response of the system

subject to the constraint that certain quantities are exactly conserved. In the case of neutron
stars, for example, we are interested in the composition of quark matter subject to the
condition that the baryon density is fixed and the net density of electric charge is zero. For
this purpose we consider the thermodynamic potential as a function of the quark density
ρq = 3ρB, the up- and down-quark fractionsx = ρu/ρq andy = ρd/ρq, and the electron
chemical potentialµe:

ω(ρq, x, y,µe) = F(ρq, x, y)−µeQ

= 3π2/3

4
ρ

4/3
q
{
x4/3 + y4/3 + (1− x − y)4/3

+ π−4/3ρ
−2/3
q m2

s(1− x − y)2/3
}

+µeρq

(
x − 1

3

)
− 1

12π2
µ4

e. (35)

We have neglected higher-order terms in the strange-quark mass as well as the mass of
the electron. In order to determine the ground state we have to make (35) stationary with
respect tox, y,µe. Minimization with respect tox andy enforcesβ equilibrium, while
minimization with respect toµe ensures charge neutrality. We find

µe � m2
s

4pF
, (36)

which shows that there is a small nonzeroµe and a corresponding suppression of strange
quarks with respect to light quarks even at high density.
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We would now like to study how these results are modified in superfluid phases of
QCD. We begin with a simple toy model introduced by Rajagopal and Wilczeck [17].
The model contains two quark flavors, up and down, that pair in a spin-singlet state which
is antisymmetric in both color and flavor. The pair condensate is described by the order
parameter〈εabuaCγ5d

b〉. Here,a, b are color indices that only take on the values 1 and 2.
One may think of this toy model asNf = 2 QCD where the contribution of the third,
unpaired, quark color is ignored. Alternatively, we may think of this theory asNc = 2
QCD.

We can calculate the response in the superfluid in the same way we did in the normal
phase, using the relation between the quark-number susceptibilities and the 00-component
of the polarization function. In the superfluid phase, there are two contributions coming
from the normal and anomalous components of the quark propagator. For the quark number
susceptibility we get

χB = −Π00
(
ω= 0, �k→ 0

)
= 4Nc

∫
d4p

(2π)4

{
p2

0 + ε2
p(

p2
0 − ε2

p −∆2
)2 − ∆2(

p2
0 − ε2

p −∆2
)2
}
, (37)

where the first term is the contribution from the normal quark propagator and the second
term is the anomalous contribution. The two contributions are exactly equal and sum up to

χB = 4Nc

{(
µ2

4π2

)
+
(
µ2

4π2

)}
= 4Nc

(
µ2

2π2

)
, (38)

which is equal to the result in the normal phase. We should note that the first term alone
only contributes half the susceptibility in the normal phase, even though the susceptibility
is independent of the gap and the naive∆ → 0 limit of the first graph would seem to
correspond to the susceptibility in the normal phase. This is due to the fact that theω→ 0
and∆→ 0 limits do not commute. This phenomenon is well-known from calculations of
the screening mass in other many body systems [45].

The calculation of the isospin susceptibility proceeds along exactly the same lines,
only the isospin factors of the two diagrams are different. The isospin factor of the
normal contribution is tr[τ3τ3] = 2, while the isospin factor of the second term is
tr[τ3τ2τ3τ2] = −2. The two contributions cancel exactly and the isospin susceptibility is
zero. This results has a simple physical interpretation. The superfluid order parameter in
Nf =Nc = 2 QCD is a flavor singlet and the only broken symmetry is theU(1) of baryon
number. As a result, there is only one massless state, theU(1) Goldstone boson. This state
couples to the baryon density and leads to a nonzero baryon-number susceptibility but it
does not couple to isospin. All states that carry isospin have energies of the order of the
gap, soχI remains zero as long asµI <∆.

We can also see how the calculation of the isospin susceptibility differs in the case of
CFL quark matter. Because of the symmetries of the CFL phase, there are two types of
quasiparticles, anSU(3) octet with gap∆8 =∆ and anSU(3) singlet with gap∆1 = 2∆.
Up to degeneracy factors, the two types of quasiparticles contribute equally to the quark-
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number susceptibility. We findχB = 18µ2/(2π2), which is equal to the result in the normal
phase. The calculation of the isospin susceptibility is more complicated. We get

χI = 2
∫

d4p

(2π)4

{
7

6

p2
0 + ε2

p(
p2

0 − ε2
p −∆2

8

)(
p2

0 − ε2
p −∆2

8

)
+ 1

3

p2
0 + ε2

p(
p2

0 − ε2
p −∆2

8

)(
p2

0 − ε2
p −∆2

1

)
− 1

3

∆2
8(

p2
0 − ε2

p −∆2
8

)(
p2

0 − ε2
p −∆2

8

)
− 1

3

∆8∆1(
p2

0 − ε2
p −∆2

8

)(
p2

0 − ε2
p − 4∆2

1

)
}
. (39)

The first term comes from particle–hole diagrams with two octet quasiparticles while the
second term comes from diagrams with one octet and one singlet quasiparticle. There is
no coupling of an octet field to two singlet particles. The third and fourth term are the
corresponding contributions from particle–particle and hole–hole pairs. The four integrals
in (39) give

χI = 2

{
7

6
+ 1

3
− 1

3
− 4 log(2)

9

}(
µ2

4π2

)
= 21− 8 log(2)

18

(
µ2

2π2

)

� 0.86

(
µ2

2π2

)
, (40)

which should be compared toχI = 3µ2/(2π2) in the normal phase. We observe that there is
a partial cancellation between the normal and anomalous contributions. However, because
of the more complicated flavor structure this cancellation is not exact. The isospin density
induced by an isospin chemical potential is reduced by a factor∼ 3.5 compared to the
normal phase, but it does not vanish. In linear response theory we expand around the
pointµI =mu =md =ms = 0. In the real world the quark masses are nonzero and there
is a critical isospin chemical potentialµcrit

I �= 0 below which the isospin susceptibility
vanishes. In order to see a threshold behavior inµI we have to resum mass corrections.
This is most efficiently accomplished using the effective chiral description developed in
Section 2, see Eq. (10).

5. Summary

We have studied the response of three-flavor quark matter to a nonzero electron
chemical potential and a nonzero strange-quark mass. We have focused on the regime
µe,m

2
s/(2pF) < ∆ in which the perturbation does not destroy color–flavor locking. We

have identified a new scaleµe,m
2
s/(2pF) ∼ √

mu,dms(∆/pF) which corresponds to the
onset of pion or kaon condensation [46–51]. This scale is parametrically much smaller
than the gap. If CFL quark matter exists in the core of a neutron star, it is likely to be K0
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condensed. Both with or without a kaon condensate, there are no electrons present [17].
If CFL quark matter is in contact with a hadronic phase that supports a large electron
chemical potential the surface layer is likely to be K− or π− condensed [52].

These results are based on an analysis of how to incorporateµe andm2
s/(2pF) in the

chiral effective theory. Both terms enter as constant flavor gauge fields, with coefficients
completely determined byfπ. The contribution of them2

s/(2pF) term to the Goldstone
boson masses is of higher order in the quark masses as compared to the leading-order√
mms(∆/pF) term. It can nevertheless become dominant because the O(m) term is

suppressed by powers of
√
m/ms and (∆/pF). As a consequence, the O(m2) term can

cancel the O(m) term without leading to a breakdown of the low-energy expansion.
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Appendix A. Mass terms induced by the color-symmetric diquark condensate

The O(M2) mass term in (6) gives anomalously small Goldstone-boson masses of the
ordermGB ∼ √

mms(∆/pF). We already noted that mass terms not suppressed by(∆/pF)

cannot appear at O(M2). For strange mesons, the O(M2) mass term also contains an
additional suppression factor

√
m/ms. Here,m is the mass of the light quarks andms

is the strange-quark mass. The fact that all Goldstone-boson masses are proportional to the
light-quark mass is related to the fact that the CFL order parameter is totally antisymmetric
in flavor. This flavor structure also leads to an accidental symmetry of the effective theory
at O(M2). If ms = 0 butm �= 0, we find an octet of exact Goldstone bosons, even though
the unbroken flavor symmetry is onlySU(2).

There are mass terms at O(M2) that are consistent with the symmetries of the CFL phase
that will remove the accidental symmetry and give contributions to the kaon mass that are
proportional toms(∆/pF). These terms are induced by the color–flavor symmetric gap
parameter

∆abij =∆S
(
δai δ

b
j + δaj δ

b
i

)
. (A.1)

The symmetric gap is consistent with the symmetries of the CFL phase but disfavored
by the interaction. In particular, one-gluon exchange is repulsive in the color-symmetric
quark–quark channel. In perturbative QCD, a small symmetric gap is generated by mixing
with the primary gap parameter. We find [6]
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∆S = g

π

√
2 log(2)

36
∆A, (A.2)

where∆A is the color–flavor antisymmetric gap parameter.
We can calculate the contribution of∆S to the Goldstone masses using the methods of

Beane et al. [26]. Including the effects of both∆A and∆S, we find

L = −∆A∆A

4π2
log

(
∆A

pF

)(
Tr(MΣ)Tr(MΣ)− Tr(MΣMΣ)+ h.c.

)

−∆S∆S

4π2 log

(
∆S

pF

)(
Tr(MΣ)Tr(MΣ)+ Tr(MΣMΣ)+ h.c.

)
. (A.3)

Here,∆A,S are the flavor-antisymmetric and -symmetric “anti-gaps”. For the purpose of
estimating the relative size of the two mass terms, we shall assume that∆A,S �∆A,S. We
can now calculate the correction to the charged kaon mass:

mK± =
[

4AA

f 2
π

md(mu +ms)+ 4AS

f 2
π

(mu +ms)(2ms + 2mu +md)

]1/2

� 2
√
AA

fπ

√
mms

(
1+

(
∆S

∆A

)2
ms

mu
+ · · ·

)
, (A.4)

with AA = ∆2
A/(4π

2) log(pF/∆A). Using (A.2), we observe that the correction term is
irrelevant in weak coupling.

Appendix B. µQ + MM†/(2pF) terms from integrating out the gauge field

Following the discussion in Section 3 we can also derive the O(M4) terms by integrating
out the gauge field. This discussion will also make it clear that theM†M andMM† terms
enter in the effective Lagrangian like gauge fields, together with flavor-nonsinglet chemical
potentials.

In this section we would also like to show how, by explicitly keeping track of the
orientation of the CFL order parameter, we can determine how the chiral fieldΣ enters
into the mass terms. This is useful because at higher order the number of independent
terms in the chiral Lagrangian quickly proliferates and it becomes more difficult to identify
the diagrams in the microscopic theory that correspond to a given term in the effective
Lagrangian.

In order to match the microscopic theory against the effective theory in the vacuum
(Σ = 1) phase, we calculate diagrams in the microscopic theory using the Nambu–Gorkov
propagators in the normal CFL phase. The inverse Nambu–Gorkov propagator for theψ+
field is given by

S−1 =
(
p0 − εp ∆

∆ p0 + ε

)
, (B.1)

with the anomalous self-energy

(∆L)
ab
ij = −(∆R)

ab
ij =∆8

(
δai δ

b
j − δaj δ

b
i

)
. (B.2)
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The inverse Nambu–Gorkov propagator is not diagonal in color and flavor. It becomes
diagonal in the space spanned by the 9 color–flavor matrices

(
vA
)ai =

( 1√
2

(
λA
)ai 0

0 1√
2

(
λA
)ai
)
, (B.3)

whereλ0 = √
2/3 andλA (A = 1, . . . ,8) are the Gell-Mann matrices. In this basis, it is

straightforward to compute the inverse of (B.1). We find

SAB = δAB

p2
0 − ε2

p −∆2
A

(
p0 + ε −∆A
−∆A p0 − εp

)
, (B.4)

with ∆A = 2∆8 for A = 0 and∆A = −sym(A)∆8 for A = 1, . . . ,8. Here, sym(A) = 1
for the symmetric Gell-Mann matricesA = (1,3,4,6,8) and sym(A) = −1 for the
antisymmetric matricesA= (2,5,7).

In order to keep the dependence onΣ , we have to perform the calculation using the
anomalous self-energy in the rotated vacuum:

(∆L)
ab
ij =∆8

(
Xai X

b
j −XajX

b
i

)
, −(∆R)

ab
ij =∆8

(
Y ai Y

b
j − Y aj Y

b
i

)
, (B.5)

with X ∈ SU(3)L and Y ∈ SU(3)R. The Nambu–Gorkov propagator for left-handed
fermions is diagonal in a basis spanned by the color–flavor matrices

(
ṽAL
)ai =

( 1√
2

(
λAXT

)ai 0

0 1√
2

(
λAX†

)ai
)
, (B.6)

with a similar set of matrices(ṽAR)
ai which diagonalize the propagator for right-handed

fermions. In the basis (B.6), the fermion propagator in the rotated CFL vacuum has exactly
the same form (B.4) that it had in the ordinary CFL vacuum (B.2). The dependence on
X,Y comes in when we calculate diagrams with external color or flavor currents. In that
case we have to take matrix elements of the external current between the basis states(ṽL)

and(ṽR).
We can now calculate a one-loop diagram with insertions ofMM† and the gauge

fieldA0. We find

>E = m2
D

2pF
Tr
[
X†MM†XAT

0

]
. (B.7)

In the same way, we also calculate diagrams with insertions ofM†M andQ. Collecting all
these terms, we get

E = m2
D

2
Tr

[(
X†µeQX+X†MM

†

2pF
X+AT

0

)2

+
(
Y †µeQ

†Y + Y †M
†M

2pF
Y +AT

0

)2
]
. (B.8)

Similar to the calculation offπ it is essential here to take into account the mixing with the
gauge field. Without theA0 field, we would conclude that there is no dependence on the
flavor matricesX,Y . We can now integrate out the gauge fieldA0. We get
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>E = m2
D

4
Tr

[((
µeQ+ MM†

2pF

)
Σ −Σ

(
µeQ

† + M†M

2pF

))

×
((
µeQ

† + M†M

2pF

)
Σ† −Σ†

(
µeQ+ MM†

2pF

))]
, (B.9)

whereΣ = XY †. We note that, after integrating out the gauge field, the vacuum energy
(B.9) only depends on the chiral fieldΣ and not onX andY separately. Usingfπ =mD,
we observe that (B.9) contains the terms required to complete the covariant derivative
in (6).
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